ابراهيم جاد
مؤسسي ريبير
- إنضم
- 28 فبراير 2009
- المشاركات
- 746
- مستوى التفاعل
- 1
التقنيات الحديثة في دوائر القدرة المفتاحية smps
التقنيات الحديثة في دوائر القدرة المفتاحية SMPS
The technique of zero voltage switching in modern power conversion SWITCH MODE POWER SUPPLY
Zero Voltage Switching ZVS
هو تحويل الموجة المربعة التقليدية إلى قدرة ثابتة الجهد بالاعتماد على زمن فتح النبضة (on-time) و بالاستفادة من صدى (ارتداد) التحويل المفتاحي resonant switching transition .
المميزات العامة (Z.V.S)
- لا يوجد فقد خلال عملية التحويل
- التخلص شبه التام من التأثيرات المغناطيسية EMI والتأثيرات الراديوية RFI المشعة من الدائرة
- لا توجد قمم عالية للتيار
- تعطي فعالية عالية عند جهود التغذية المختلفة
- يتغير ترددها حسب الحمل
- تعطي فعلية عالية عند أي تردد تعمل عليه
- تحكم واسع المدى في قدرة الخرج
- جهد الخرج ثابت مهما كانت ظروف عملها
- تحتوي حماية من زيادة جهد الدخل
- تحتوي حماية من زيادة تيار الخرج
- تحتوي حماية من زيادة درجات الحرارة
- تحتوي حماية من زيادة قدرة الخرج
- قدرات فائقة في تحمل وجود قصر في الخرج
هنالك نوعان من هذه الدوائر
- على خط القدرة ON-LINE أي الدوائر المباشرة مع الدخل
وهي التي استخدمت في أجهزة عديدة منها السوني والسامسونغ والتي يلاحظ وجوب تركيب مكثفات عزل لمدخل الهوائي. ويندرج في إطارها DC/DC CONVERTER - خارج الخط OFF-LINE أي الدوائر المعزولة عن الدخل
والتي يؤمن محولها عزل تام بين الدخل والخرج وهي الأكثر شيوعاً
نظرية العمل:
وهي تشبه إلى حد ما نظرية عمل محول الإضاءة fly back transformer ولكنها تسمى في دوائر القدرة بالصدى أو الرنين resonant وذلك بسبب الاختلافات بينهم في شكل الإشارة حيث هي مربعة وعدد اللفات التي لا تزيد عن 100 لفة سواء للابتدائي أو الثانوي مما يقلل إلى حد كبير جداً قيمة الجهد المرتد المتولد من تفريغ شحنة قلب الفرايت في محولات التقطيع .
نجد أن التيار المار عبر الملف الابتدائي والناتج عن تشغيل الترانزيستور في وضع ON يولد تياراً بنفس اتجاهه في الملف الثانوي ويكون ذلك بعكس اتجاه ثنائي التقويم D1 وكل الطاقة يتم تخزينها في قلب الفرايت للمحول (مغنطة) ويلاحظ أن كمية هذه المغنطة تعتمد على زمن مرور التيار في الملف الابتدائي وبشكل طردي
وعندما نفصل الترانزيستور OFF يبدأ قلب الفرايت بتفريغ شحنته المغناطيسية فيسبب مرور تيار في كلا الملفين الابتدائي والثانوي .. أما تيار الابتدائي فلا يستهلك بسبب وجوده في توصيل عكسي ولكن تتم إضافته حبث يعتبر الجهد الموجب على المكثف C1 هو السالب بالنسبة له ويقوم يشحن المكثف C2 وهذه الشحنة تساوي جهد الارتداد مضافاً إليه الجهد الموجود على المكثف C1. فلو كان جهد الخرج 120V فيكون الجهد على هذا المكثف هو 120X125%+300 أي يساوي نحو 460V . على اعتبار الجهاز يعمل على جهد 220VAC .
أما التيار المتولد في الملف الثانوي فيتم إمراره عبر الثنائي D1 ومن ثم تخزينه بالمكثف C3 والذي تتناسب قيمته مع التردد المستخدم بشكل عكسي وتتناسب مع كمية الطاقة المستفادة بشكل طردي حسب التصاميم.
نظرة حول اللفات
n في المحولات المستخدمة في أجهزة التلفزيون نجد أن نسبة عدد لفات الدخل أعلى بمعدل حوالي 25% عن لفات الخرج HT فلو كانت لفات الابتدائي 24 لفة يكون عدد لفات الثانوي 18 لفة ولكن هذا لا يقتضي أن يزيد جهد الدخل بمقدار 25% عن جهد الخرج لأن هذا المحول ارتدادي وليس خطي كالمحولات العادية المستخدمة في الترددات 50/60Hz للخفض أو الرفع. حيث يعتمد جهد الخرج على مقدار الجهد الذي تم شحن قلب الفرايت به وإنه في كل الحالات يضيف جهد الخرج إلى الدخل، كما وضح سابقاً حيث يمكن تشغيل هذه الدوائر على جهد يصل 24VDC بشرط أن يسمح المصمم بذلك أو أن يستبدل ترانزيستور التقطيع بآخر تياره عالي .
n في الغالب يستخدم سلك معزول ومن ثم مجدول في لفات الابتدائي والثانوي لزيادة تحمل التيار
n أيضاً يلف سلك الابتدائي ملاصق تماماً لقلب الفرايت للتخلص من المفاقيد
n يكون إتجاه لف ملفات الابتدائي معاكس لباقي اللفات وبهذه الطريقة لا يمكن الحصول على جهد سالب في الخرج إلا بقلب اللفات إذا لزم الأمر.
وهنا تفصيل لأحد محولات التقطيع الارتدادية وقد وضح عليه عدد اللفات والجهد
ومن أجل فهم نظرية عمل المذبذب داخل المنظمات المفتاحية ( SWITCHING REGULATORS ) أقدم هذا العرض عن المذبذب متعدد الإهتزاز والذي يستخدم في تطبيقات عديدة في الحياة العملية كدائرة وامض ضوئي FLASH ولا يشترط أن تكون هذه الدائرة في المنظم حيث أنه قد يستخدم المذبذبات الرقمية فمهما يكن المذبذب المستخدم أعتقد أن هذا العرض يوضح النظرية
المذبذب متعدد الاهتزاز Multivibrator Oscillator
الحالة الأولى: الجهود
عندما Q1 في الوضع ON
الجهد على مجمع Q1 يساوي صفر =0V
الجهد على قاعدة Q2 هو الجهد عبر المكثف C1 وهذا الجهد في الوقت الحاضر منخفض ولكنه يبدأ بالارتفاع مع شحن C1
وتكون Q2 في و ضع OFF حتى يصل جهد قاعدتها لأكثر من0.6V
الحالة الثانية: شحن C1 وتفريغ C2
المكثف C1 يشحن من خلال المقاومة R2
C2 يفرغ عبر R3 و R4
الخرج يكون عاليا (على مجمع Q2) و أقل قليلاً من جهد التغذية بسبب تيار تفريغ C2 عبر المقاومة R4
يستمر الو ضع هكذا حتى يصل جهد Q2 أعلى من 0.6V فتصبح في وضع ON
الحالة الثالثة: تغير الجهود على الترانزستورات بشكل تبادلي
عندما Q2 في الو ضع ON
الجهد على مجمع Q2 والذي هو جهد الخرج ينتقل من الموجب إلى الصفر
تغير هذه الخطوة على المكثف C2 يسبب في وصول نبضة سالبة (مقارنة بالتي كانت موجودة) لقاعدة Q1 (بسبب التفريغ المفاجئ ل C2) فيصبح Q1 في وضع OFF
عندما Q1 تصبح OFF فالجهد على مجمعها يصبح مقارباً لجهد التغذية
الحالة الرابعة: تفريغ C1 وشحنC2
في هذا الوضع فإن C1 يفرغ عبر R1 و R2
المكثف C2 يبدأ بالشحن عبر المقاومة R3 من الجهد الناقص إلى الصفر حتى يصل 0.6V
الجهد على قاعدة Q1 هو الجهد على C2
تحافظ الدارة على هذا الوضع حتى يصل الجهد على قاعدة Q1 لأعلى من 0.6V عندها تصبح Q1 في الوضع ON لتقفز الدائرة عائدةً للحالة الأولى
جعل Q1 من نوعية مختلفة عن Q2 يضمن تحديد أي الترانزستورين يبدأ العمل
يعتمد زمن نبضة ON على قيمة R2/C1
يعتمد زمن النبضة OFF على قيمة R3/C2
والآن دعونا نتحكم في هذا المذبذب بما يخدم مصلحة توضيح عمل المذبذب داخل المنظمات المفتاحية
أذكر هنا أن للمقارن (comparator) مدخلين ومخرج واحد بالإضافة لطرفي التغذية... أحد المدخلين يأخذ إشارة موجب والأخر إشارة سالب وطالما الجهد على الموجب أعلى من الجهد على السالب يكون خرجه عالياً..... أما لو حدث العكس وأصبح الجهد على طرف السالب أعلى من الموجود على الطرف الموجب يصبح خرج المقارن صفراً ويمكن للمصمم تثبيت أي المدخلين على جهد مرجعي (reference ) ليقارن به التغير على الطرف الآخر ويسمى جهد العتبة (threshold)
ومن خلال الشكل السابق مع الشكل الموجي داخله يتضح أن هنالك تحكم مستمر في عمل المذبذب أو كما يقول المصممون التحكم دورة بدورة(Cycle-by-cycle)
المذبذب متعدد الاهتزاز Multivibrator Oscillator
الحالة الأولى: الجهود
عندما Q1 في الوضع ON
الجهد على مجمع Q1 يساوي صفر =0V
الجهد على قاعدة Q2 هو الجهد عبر المكثف C1 وهذا الجهد في الوقت الحاضر منخفض ولكنه يبدأ بالارتفاع مع شحن C1
وتكون Q2 في و ضع OFF حتى يصل جهد قاعدتها لأكثر من0.6V
الحالة الثانية: شحن C1 وتفريغ C2
المكثف C1 يشحن من خلال المقاومة R2
C2 يفرغ عبر R3 و R4
الخرج يكون عاليا (على مجمع Q2) و أقل قليلاً من جهد التغذية بسبب تيار تفريغ C2 عبر المقاومة R4
يستمر الو ضع هكذا حتى يصل جهد Q2 أعلى من 0.6V فتصبح في وضع ON
الحالة الثالثة: تغير الجهود على الترانزستورات بشكل تبادلي
عندما Q2 في الو ضع ON
الجهد على مجمع Q2 والذي هو جهد الخرج ينتقل من الموجب إلى الصفر
تغير هذه الخطوة على المكثف C2 يسبب في وصول نبضة سالبة (مقارنة بالتي كانت موجودة) لقاعدة Q1 (بسبب التفريغ المفاجئ ل C2) فيصبح Q1 في وضع OFF
عندما Q1 تصبح OFF فالجهد على مجمعها يصبح مقارباً لجهد التغذية
الحالة الرابعة: تفريغ C1 وشحنC2
في هذا الوضع فإن C1 يفرغ عبر R1 و R2
المكثف C2 يبدأ بالشحن عبر المقاومة R3 من الجهد الناقص إلى الصفر حتى يصل 0.6V
الجهد على قاعدة Q1 هو الجهد على C2
تحافظ الدارة على هذا الوضع حتى يصل الجهد على قاعدة Q1 لأعلى من 0.6V عندها تصبح Q1 في الوضع ON لتقفز الدائرة عائدةً للحالة الأولى
جعل Q1 من نوعية مختلفة عن Q2 يضمن تحديد أي الترانزستورين يبدأ العمل
يعتمد زمن نبضة ON على قيمة R2/C1
يعتمد زمن النبضة OFF على قيمة R3/C2
دوائر Zero Voltage Switching ومن أجل الحفاظ على جهد خرج ثابت تعتمد الأساليب التالية:
1- إيقاف المذبذب تماماً عن العمل
2- التحكم في زمن فتح نبضة المذبذب
3- التحكم في زمن إطفاء نبضة المذبذب
4- التحكم في تردد المذبذب نفسه ويكون نتيجة للتحكم في زمن الفتح والإغلاق Quasi-Resonant
وبما أنه لا يمكن حصر جميع الدوائر فقد فضلت الحديث عن STR-F6654 نظراً لانتشارها الواسع وتقدم التكنولوجيا بها وهي جزء من سلسلة منظمات الجهد المفتاحية المعزولة متغيرة التردد والتي تعتمد مبدأ الارتداد OFF-LINE QUASI-RESONANT FLYBACK SWITCHING REGULATORS والسلسلة هي STR-F66xx . بالإضافة أنه تم شرح العديد من وظائفها في موضوع كل شيء عن الروابط الضوئية Photocouplers
مواصفات خاصة
STR-F6654 SWITCHING REGULATOR
تسمى المنظم المفتاحي
فقد صممت هذه المتكاملة بشكل دقيق لتلبية المتطلبات المتزايدة للدقة والفاعلية في دوائر التغذية المفتاحية النهائية (خرج) مع المحولات fly back converters وهي تستخدم الموسفت MOSFET في الخرج.
ولها قدرة تحكم في الخرج أكثر من 150W عند جهود التشغيل من 85VAC وحتى 265VAC والذي يسمي بالجهد الشامل UNIVERSAL .
أقصى جهد مسموح على الدخل 399Vrsm . يشعر به على الطرف 4
يحدد تيار الخرج بحسب دورات التردد ... وجهد الخرج متقن القيمة وله حماية .. وهي أيضاً محمية من زيادة تيار الخرج .... وفي حلة قصر الخرج فإنها تقف عن العمل (تقفل) LATCH وتقفل كذلك عند وجود مشكلة في جهد تغذيتها
تيار البدء متدني واستهلاكها للطاقة ضعيف جداً في وضع الانتظار Standby و يصل إلى أدنى من 30W
تعمل على درجات حرارة من 25 تحت الصفر وحتى 125
آخر رقمين في اسم المتكاملة مرتبط بالجهد الأقصى على خرجها وهي تتحمل حتى 650V على DRAN
الشكل الكلي المختصر للمنظم المفتاحي STR-F6654
ندخل الآن في تفاصيل دوائر القدرة من الداخل
STARTUP دائرة البدء
بالنظر للرسم المرفق للتركيب الداخلي لسلسلة STR-F66xx نجد أن الطرف (4) وهو مدخل جهد تشغيل الحافز والتحكم والمسئول عن قيام الدائرة STARTUP وإغلاقها SHUTDOWN .
مقاومة البدء startup resistor
نلاحظ في هذا النوع من المنظمات المفتاحية الصغر النسبي لمقومة البدء ويعود سبب ذلك إلى أنها تحمل على عاتقها عبئ التشغيل الأولي لدائرة المنظم ZVS والذي من مميزاته الأولى التحكم بجميع نبضات التردد Cycle-by-Cycle . وسيعمل المنظم بداية حسب الجهد والتيار الماران عبرها
يتم شحن المكثف C2 بواسطة مقاومة البدء startup resistor Rs من جهد التغذية الرئيس وهنا يبدأ هذا الجهد بالوصول لدائرة الحافز وتبدأ الموسفت بالعمل ومع مرور الزمن يزداد التيار المار بها مما يولد جهداً على الطرف (1) في المنظم وعندما يصل الجهد على المكثف C2 للقيمة 16V يكون الجهد على الطرف (1) قد وصل للقيمة 0.73V وفي هذه اللحظة يبدأ المذبذب عمله و تقوم دائرة التحكم control circuit بالسماح للمنظم بالعمل regulator operation وبمجرد عمله تسحب دائرة المنظم تياراً شدته 30mA . وهذا التيار يمكنه تفريغ المكثفC2 لو استمر وعلى الرغم من ذلك فإنه يطلب من مقاومة البدء تأمين تياراً لا تقل شدته عن 0.5mA لكي يحافظ على الوضع set للقفل Latch والذي يلزمه تياراً شدته 0.4mA . ولكن هذا الهبوط يكون لحظياً حيث أنه وبمجرد عمل المنظم وثبوت جهد خرجه يقوم الثنائي D2 بإعادة شحن المكثف C2عن طريق الملف D من الجهد الذي ولده المنظم ليصل الجهد على طرفه (طرف 4) 18V بشكل اسمي
لاحظ من خلال هذا المنحنى لقيمة الجهد على طرف (4) كيف أن الجهد يبدأ من الصفر مرتفعاً بالتدريج خلال شحن المكثف عبر المقاومة Rs حتى يصل الجهد للقيمة 16V وهذه القيمة قادرة على تشغيل دائرة حافز المنظم ولكنها تستهلك ما قيمته 30mA وشحنة المكثف وحدها لا تقدر على تحمل هذا التيار بدون وصول جهد تعزيز
علاقة مقاومة البدء Rs بالمكثف C2
يعتمد زمن تأخير التشغيل –التشغيل السلس- Soft Start على قيمة المقاومة Rs مقرونة بقيمة المكثف C2 .فعندما قيمة المقاومة Rs تساوي 68KΩ فهذا يهيأ المنظم للعمل بالجهد الشامل UNIVERSAL والذي هو ما بين 85VAC وحتى 265VAC مع مراعاة أن ذلك يخفض قدرة المنظم للنصف تقريباً أما لو أردنا تشغيله على الجهد 220VAC فتكون قيمة المقاومة Rs بقيمة 100KΩ .
تختار قيمة المكثف بين أدنى قيمة حين تكفي شحنته لبدء تشغيل المنظم (لا يصل الجهد على الطرف 4 لأدنى من 11V) وبين القيمة القصوى المسموح بها لتأخير التشغيل Soft Start وهذه القيم بين (من 47 إلى 100F)
أقصى جهد يمكن أن يوجد على الطرف 4 بدون أن يسقط المنظم هو 20.5V وأدنى جهد هو11V وهذه القيم هامة جداً بسبب أنها تستشعر قيمة جهد الدخل وتشغل دوائر الحماية وكذلك تحدد جهد DC على خرج الحافز والذي بدوره يحدد مقدار هبوط الجهد على مصب DRAIN موسفت الخرج حيث جهد الارتداد في الثانوي يعتمد على قيمة الجهد الذي هبط في الابتدائي خاصة مع بداية التشغيل.
يمكن أن تظهر مشكلة وهي أن تغير الحمل في دائرة الخرج سوف يؤرجح الجهد الواصل عبر الثنائي D2 للطرف 4 مما قد يسبب بعض التشويش في عمل المنظم لذا توضع مقاومة صغيرة على التوالي لتجعل هذا التأرجح في الحدود المعقولة.
ظروف تشغيل المنظم
التشغيل السلس, والمذبذب المرن وتنظيم الجهد
Soft Start, Quasi Resonant and Voltage Regulation
يستخدم المذبذب الداخلي في المنظم مكثفاً بقيمة (4.7nF) Css لإنتاج تردد المذبذب المغذي للحافز من أجل تشغيل ترانزيستور الخرج الموسفت
وللمنظم أسلوبين في العمل:
1- التشغيل السلس Soft Start في زمن 50S
2- التشغيل العادي normal operation من الجهد المستحث مغناطيسياً والذي يسببه رنين المنظم (جهد الارتداد)
وفي كلا الحالتين فإن جهد خرج المنظم يتمم (يوضع في القيمة المناسبة) بواسطة التركيبة المؤلفة على مكبر الخطأ والمكونة من الرابط المستشعر بجهد الخرج ومن التيار الغير منتظم والواصل من مصب الموسفت drain (يمر لحظة فتح الموسفت) حيث يقارن الاثنين comparator مع جهد مرجعي داخل المنظم قيمته 0.73V .
بشكل عام ... بإمكان التغذية الخلفية القادمة من الرابط الضوئي والمغذية للمقارن وتظهر على خرجه أن تنهي عمل المذبذب وتوقف الموسفت عن العمل ولاحظ أن إيقاف المذبذب عن العمل عن طريق المقارن يكون لحظياً ويختلف عن إيقافه عن طريق القفل Latch والذي يستمر حتى هبوط الجهد على الطرف (4) مابين 11 إلى 8 فولت أما إيقاف المذبذب بالمقارن فيزول بمجرد زوال المؤثر
يعود المذبذب ثانية للعمل في إحدى حالتين إما عند تفريغ شحنة المكثف Css أو إذا تم استشعار الإشارة الناتجة عن الجهد المرتد على الطرف 1